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New developments in the ergodic theory of
nonlinear dynamical systems

By MicHAEL BENEDICKS

Department of Mathematics, Royal Institute of Technology, S-100 44 Stockholm,
Sweden

The purpose of this paper is to give a survey of recent results-on non-uniformly
hyperbolic dynamical systems. The emphasis is on the existence of strange attractors
and Sinai-Ruelle-Bowen measures for Hénon maps, but we also describe results
about statistical properties of such dynamical systems and state some of the open
questions in this area.

1. Introduction

Our aim is to survey some recent developments in the ergodic theory of dynamical
systems in dimension one or two, more specifically the theory of chaotic behaviour
and strange attractors. There already exist excellent overviews of this subject by
Carleson (1991) and Young (1993), and there is a considerable overlap with those
articles and the present. We have, however, been able to include some more recent
material. For a somewhat older but more complete survey with a lot of background
material see Eckmann & Ruelle (1985).

We basically have two model problems in mind.

1. The Lorenz equations. This is a flow in R® generated by the following system of
nonlinear differential equations:

T =—0ox+0oy, o =10,
y=—xz+re—y, r=28,
2 =xy—bz, b=3%

Lorenz (1963) studied the time development numerically (figure 1). His result was
that the trajectories exhibit the following behaviour:

(i) Trajectories corresponding to nearby initial points separate exponentially in
time, a characteristic of chaotic behaviour.

(ii) Nevertheless the trajectories seem for a large set of initial points to approach
a set independent of the initial point — an attractor.

2. The Hénon map. Although seemingly fairly simple, the dynamics of the Lorenz
equations appeared too complicated to allow a mathematical description. The
astronomer Hénon (1976) suggested a two-dimensional discrete dynamical system as
the least complicated model problem, which would exhibit the same features as the
Lorenz system. He considered the map 7': R*+~ R? defined by

(x)»(l +y—ax2),
Y bx

chose the parameters ¢ = 1.4, b = 0.3, and plotted a large number of iterates. The
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Figure 1.

result is the now famous picture (figure 2), which exhibits a fractal line structure on
successive enlargements.

Note that the study of a three-dimensional flow such as the Lorenz system can be
reduced to that of a two-dimensional map through the idea of a first return (or
Poincaré map) to a hyperplane.

2. Attractors

The Hénon map has an attractor. Several definitions of attractors have been
suggested. Let f be a diffeomorphism of a manifold M. We use the notation
f* = fo—-of for the nth iterate of f. Recall that the omega ltmit set w(z) is the set of
all accumulation points of the orbit {f"(x)}>_,.

The following definition of attractor was proposed by Charles Conley:

Definition 2.1. The set A is an attractor for the diffeomorphism f if there is an open
set U > A such that f(U) = U and A = NZ_,f"(U). The basin of attraction for A is

n=of (V).

However, this definition does not exclude the possibility that say 4 may be written
as the disjoint union of two pieces 4, and A4, and that there are two open sets U o
A, and T, > 4, such that f(0]) < U; and f(T}) < T and 4, = N2 /"(0), i = 1,2. We
therefore need the following notion.

Definition 2.2. 4 is an tndecomposable or topologically transitive attractor if
there is a point x,€ A such that 4 = JZ_,f"(z,).

There are other definitions of attractors, most notably those suggested by Ruelle
(1981) and Milnor (1985), which allow for more general attractors. Milnor’s definition
is as follows:

Phil. Trans. R. Soc. Lond. A (1994)
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Figure 2.

Definition 2.3 (Milnor). A closed subset 4 < M is an attractor if it satisfies two
conditions.

1. The realm of attraction p(4), consisting of all points x €M for which w(z) = 4 is
of positive measure.

2. There is no strictly smaller closed set 4" = A so that p(4’) and p(4) coincide up
to a set of measure 0.

The first condition says that there is a positive probability that a randomly chosen
point will be attracted to 4, and the second is a minimality conditions to ensure that
A does not contain any superfluous points.

Hénon, however, verified that his attractor for his parameter values was an
attractor in the sense of Conley. The question whether it is a topologically transitive
attractor is much harder as we shall see.

3. Metric description of attractors

To understand the statistical properties of an orbit {x;}72,, x; = f/(x,), it is natural
to form the Birkhoff sums

where d, denotes the Dirac measure at a. By taking subsequences, we obtain that a
subsequence converges weak-* to a limiting measure u*. It is easy to verify that u*
is an invariant measure, 1.e.

AV E) = wH(B)

for all Borel sets E. Let us from now on drop the * and let x4 denote the invariant
measure. By Birkhoff’s ergodic theorem for a.e. x, [u]

1 n—1
/’L(nzo) = % g 817
has a weak-* limit. =
If moreover y is ergodic then u{ — u as n—>o0 for a.e. z, [1]. Such a point x, is
called a generic point for the measure x. Only those limiting measures are really
interesting that have the property that a large set of initial points are generic.

Phil. Trans. R. Soc. Lond. A (1994)
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This is the background for the following definition due to Ruelle:

Definition 3.1. y is a physical measure if p{¥ — p as n—oo for a set of initial points
x, of positive Lebesgue measure.

Suppose now that f has a stable periodic orbit, i.e. an orbit {z;}2-! such that z, =
fP(z,), and that the spectrum of Df?(z,), o(Df?(z,)) < {2 < 1} or equivalently that
IDfP(zo)ll <1 for some suitably chosen norm. Then it is clear that there are
neighbourhoods {U;}2°! of the points of the orbit such that Vax,e UP ! U,

121
w —>— 3 8z, as n-—>co.
=0
An alternative definition of an attractor is then to define an attractor as a physical
measure. This definition is in fact quite close to that of Milnor. The minimal
requirement on a strange attractor is then that it is a physical measure different from
an average of point masses along a stable periodic orbit.

Example 3.1. Consider the one-dimensional map f:[—1,1] (J given by f(z) =
1—2«%. There is an explicit change of variables so that the map in the new variables

L b
18 given by f(y) _ ¢—1 OfO ¢(y) = 1—2|y|.

The map y+~1—2|y| has the property that Lebesgue measure is invariant. The
change of variables transports Lebesgue measure into a density ¢/+/(1 —«?) dz, which
is invariant for the original map x+ 1 —2x%. Note that from the change of variables
we can conclude that for all € > 0 there is n, = n,(€), a constant K = K(¢) and a set
E., satisfying Leb(CE,) < ¢, so that

IDf"(x)| = K(€)2"Y™9  Vn = ny(e) Vxek,. (3.1)
We also have that for all x # +1 there is a constant 4(x) so that
IDf™(x)] < A(x)2". (3.2)

The estimates (3.1) and (3.2) are non-uniform. There are always points that return
arbitrarily close to 0. However, from (3.1) and (3.2) it follows that

lim%log |Df*(x)| = log2, for a.e.z,
N—>00

a concrete example of Oseledets theorem (see Theorem 5.1 below).

4. The uniformly hyperbolic case

Suppose that M is a riemannian manifold, f is a diffeomorphism and that 4 is a
compact invariant set.

Definition 4.1. fis uniformly hyperbolic on A if there is a splitting of the tangent
bundle of 4 into two Df-invariant subbundles 74 = E* @ E* and that there are
constants C > 0 and A > 1 such that for all n > 0

|Df;" o] S CA™" ||, VYaxed Yve B%(x),
|IDffv| < CA"|v|, VYxed YveE(x).
[ is called Anosov if f is uniformly hyperbolic on the entire manifold.
Phil. Trans. R. Soc. Lond. A (1994)
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(5 DG) s

viewed as a map f: T2 is the canonical example of an Anosov diffeomorphism.

Example 4.1. The map

Definition 4.2. The invariant set A is called an Axiom-A4 basic set if

(1) fl, is uniformly hyperbolic;
(2) there is a neighbourhood U of 4 such that 4 ={xeU: f"(x)eU Vne Z};
(3) fl4 has a dense orbit.

For a general diffeomorphism f: M () define the wandering set W as the set of points
x €M, such that there is a neighbourhood U3z such that f*(U) N U= &,Vn = 1. The
complement of the wandering set is Q(f), the non-wandering set.

Definition 4.3. A diffeomorphism f: M (O satisfies Axiom-A if there is a de-
composition of the non-wandering set Q(f) as a disjoint union Q(f) = U%, 4,, where
A, are Axiom-A basic sets.

(This definition is usually a theorem — Smale’s spectral decomposition — if one uses
the usual definition of Axiom-A diffeomorphisms.)

Certain of the 4; may be attractors in the sense of Conley.

5. Lyapunov exponents
If 4 is an n x» matrix there is decomposition into invariant subspaces

Rr=E ®L,® - DE,
so that

lim 1log A" v| = A;,, Vvek,.
n—»ioon

(This follows easily from a representation of A in Jordan’s normal form.)
A nonlinear version of this result is the following theorem due to Oseledets.

Theorem 5.1. Suppose f: M O is a C*-diffeomorphism with invariant measure .
Then for a.e. x[u], there is a splitting of the tangent space

T™™M,=E,(x)® " Ey(x)
and

lim %log |Dfro| = A(x), VveE,1<i<k.

n—>+ oo

(We have to make the technical assumptions that [log*|Df|du, [log*|Df | du <o0.)
If moreover p is ergodic A,(x) = A, is constant a.e. [p].

6. Stable and unstable manifolds
We define the stable manifold at x as

We(a) = {yeM: lim d(f"z, f*y) = 0}

n—>0

PHhil. Trans. R. Soc. Lond. A (1994)
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and the unstable manifold at x as

W(x) ={yeM: lim d(f"x,f"y) = 0}.

If x, is a hyperbolic fixed point, i.e. a fixed point such that, o(Df(x,)) N {|z| = 1} =
3, there is a neighbourhood U of xo such that WY (z,) =N, 54f"(U) is an immersed
submanifold and W“(oc0 U, sof (W ()

A similar statement is obtained for W*(x,) by reversing the arrow of time.

The theory of generalized stable and unstable manifolds in the uniformly
hyperbolic case is due to Hirsh, Pugh and Shub and a good reference is Shub (1987).
A corresponding theory in the non-uniformly hyperbolic case is due to Pesin (1977).

Theorem 6.1 (Pesin’s Stable Manifold Theorem). If 1 is an invariant measure for
the diffeomorphism f such that for a.e. x [u], |A;(x)| # 1 for all i, then for a.e. x[u] W*(x)
and Wé(x) are immersed submanifolds.

One can then form the unstable foliation # * = U,_, W*(x) and the stable foliation

= U, W¥x). For an exposition of the proof see Fahti et al. (1983) or Pugh &
bhub (1989).

7. Sinai-Ruelle-Bowen measures

Definition 7.1. A Sinai-Ruelle-Bowen measure is an invariant probability
measure y such that u can be represented (disintegrated) as

w= J Mo () m(de)
A
supp (u,) =8, = W*(x,) =« F,

where dp, = ¢, dx is absolutely continuous with respect to the induced riemannian
measure.

An example of a measure of this type is the following. Let 4 = I x (', where (' is a
Cantor set, say the usual triadic Cantor set, and let 4 = m x u,, where m is Lebesgue
measure on /, and u, is the Cantor measure associated with the set C.

SRB-measures where first constructed for Anosov mappings by Sinai and for
Axiom-A attractors by Ruelle and Bowen.

Theorem 7.1. If A is a Axiom-A4 atiractor it has a unique SRB-measure . For a.e.
x in the basin of attraction of A
ln 1

One of the aims of the present paper is to describe to which extent this can be
carried over to the non-uniformly hyperbolic situation.

Theorem 7.2 (Pesin). Let f be a C*-diffeomorphisms with an invariant SRB-measure
psuch that |Ay(x)| # 1Via.e. [p]. Then there exist at most countably many sets {A;}2., with
w(A4;) > 0 and ,u(UA ) = 1 such that (f|4, pls,) is ergodic. For each u; = pl,, there is X,
of positive Lebesgue measure such that

ln 1

- Z O, —p; YreX,.

Phil. Trans. R. Soc. Lond. A (1994)
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For an exposition of the proof see Pugh & Shub (1989).

The Pesin theory is very satisfactory except for that there is one thing missing —
the construction of SRB-measures. This construction is now well-known in the
Axiom-A situation but most ‘real-life’ dynamical systems are non-uniformly
hyperbolic.

8. The one-dimensional case

We consider the quadratic family of maps f,(x) = 1 —aa?, 0 < a < 2. For this range
of parameters f, maps the unit interval [—1, 1] into itself and we have the following
celebrated theorem of Jakobson (1981) concerning chaotic behaviour.

Theorem 8.1 (Jakobson). There is a set A < (0, 2] of parameters of positive Lebesgue
measure so that Yae A

1) IDFRON] = e, ¥n > 05 ¢ = o(4) > 0;
2) f, has an absolutely continuous invariant measure i, ;
3) f, has positive Lyapunov exponent a.e. [u,].

There are several approaches to this result — apart from Jakobson’s original — by
Benedicks & Carleson (1985, 1991), Rychlik (1988), Yoccoz (1990) and others.
In Benedicks & Carleson’s approach initially a parameter set A’ is chosen as

={a:|fi(0)| = e Vj=1}.

One verifies that A’ is of positive Lebesgue measure. The final set 4 is then chosen
as a subset of A" —still of positive measure —such that the critical orbit has a
‘typical”’ statistical behaviour relative to the critical point 0. The parameter values
in A’ are characterized by a slow approach rate to the critical point 0. This may be
compared with Misiurewics’ condition |f1(0)] = 8,Vj > 0, i.e. the critical orbit avoids
a fixed neighbourhood of the critical point. The set of a such that Misiurewics’
condition is satisfied is of Lebesgue measure 0.

For a sufficiently close to 2, f, is essentially expanding outside a fixed
neighbourhood V = (—4,4) of 0. For xe V there is p = p(x) so that

IDf?(x)| = [2az] - |DfP~ (f(x))] = e°?,
where ¢ is a fixed constant. For j=0,1,...,p, fi(x) follows f7(0) closely and
Df?7! (f(x)) compensates for the small factor |2ax|.

The invariant measure is constructed by weak limits of u,, = n™* X771 fim, where m
is Lebesgue measure and (fim)(E) = m(f7E).

Remark 1. The set B = {a: f, has a stable periodic orbit} has for a long time been
believed to be dense in (0,2). This result is now claimed in Swiatek (1992).

Remark 2. The density ¢, of u, for a€4 has an estimate
C+ Z
Pa(®) < Vo= f’ 1k

This is a result of Young (1992).

Remark 3. Other behaviour appears for a € (0,2). For the limiting parameter a,, of
the Feigenbaum bifurcations there is a physical measure, which is purely singular
with respect to Lebesgue measure. Its support is an attractor in the sense of Milnor

Phil. Trans. R. Soc. Lond. A (1994)
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but not in the sense of Conley. Hofbauer & Keller (1990) proved the surprising result
that there are parameters value a such that there is a set of initial points X of positive
Lebesgue measure such that n=* X' 8,5, — 0,, where y is the unstable fixed point.

A natural conjecture is that the union of the points, where f, has an absolutely
continuous invariant measure and the points where f, has a stable periodic orbit, is
a subset of (0,2) of full Lebesgue measure.

9. The Hénon map
For the Hénon family

_ 2
(x).»(H'y ax), 0<a<2, b>0,
Y bx

we have the following result:

Theorem 9.1 (Benedicks & Carleson 1991). T'here is a set 4 of parameters (a,b) of
positive two-dimensional Lebesgue measure such that ¥(a,b)e 4:

(1) there is a compact invariant set A = A, , and an open neighbourhood U = A so
that VzeU, TV z— A as j—~00; the attractor A is the closure of the unstable manifold
W*(2), where £ is the fixed point of T in the first quadrant;

(2) there is a point z, such that the orbit {1z} o is dense in A and |DT(z,)(9)| = e,
i=0,1,..., for some ¢ > 0.

Benedicks & Young (1993) proved furthermore
Theorem 9.2. For (a,b)e 4 as in Theorem 9.1,

(1) 1\, has a unique SRB-measure such that supp(u) = 4;
(2) there is a set X < U, of positive Lebesque measure such that
1 n—1
— X Op,—p VzeX.
" jzo
An interesting open problem is to determine whether (2) holds for a.e. ze U with
respect to Lebesgue measure as is the case for Axiom-A attractors.

Remarks on the proofs. In the one-dimensional case the main idea is to control the
orbit of the critical point 0. In the Hénon case the critical point is replaced by a
critical set ¥ = W*(%) having the following properties

(1) % is countable;
(2) € < (—9,0) x R, where 6§ > 0 and small;
(3) for all ze ¥, |DTu| < (6b) Vj = 0, where u is the tangent vector of W at z.

Intuitively, the points of ¥ have the property that they are mapped on ‘sharp
turns’ of W*(%) (figure 3).

The main objective is to prove that w; = DTY () satisfies |w;|> e” Vz,€ % Vj > 0.
(Compare the result in the one-dimensional situation that |Dfi(1)| = e%.) When the
point z, returns to (—4,d) x R, the vector w, = DT7 (7) will essentially align with the
stable direction and is contracted heavily. However, at the return at time n we
associate to z, another critical point 2, so that (i) DT'%(9)|> e for 0 < j < p; (ii) {£}1,
‘controls’ {z,,,}%, and the associated derivatives.

Phil. Trans. R. Soc. Lond. A (1994)
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=

Figure 3.

The basic idea is then that the vector w, is initially contracted during the ‘fold
period’ but that we obtain the same type of compensation of the loss in size of the
vector w,, during the ‘bound period’ 1,...,p as in the one-dimensional case. We
have to exclude parameters corresponding to each critical point to ensure that
dist(77(z,), € ) = e Vj = 1. It is important to allow an exponential approach rate in
order that the excluded set corresponding to each critical point and time > n should
be exponentially small in n. This is necessary since the number of critical points,
which are relevant at time n grows exponentially. 1

It is important that the critical set is only defined for the parameters (a,b) € 4. The
proof goes by induction and at the Nth stage of the induction we have a finite
approximation % of the eventual critical set €, i.e. for ze €}, (3) is only satisfied for
J<N.

Let us explain how this successive definition of the %, starts by a concrete
computation. Note that the first segment of the unstable manifold through the fixed
point has a representation as an approximate parabola

x=1-a(y/b)*+r(y),

where |7||.1 = O(b). We conclude that the slopes T( ) of the upper and lower branches
of the unstable manifold satisfy 7(x) = F (b/2a) x)/a)) 2+ O(b%) respectively.
One verifies that the most contractive dlrectlon S( ) of DT(z) only depends on « and
satisfies s(x) = 2ax+ O(b?). The equation 7(x) = s(x) has the two solutions (z,y) =
(Fb/4a® £b/a'?)+O®b%) on W (%), which are located in the second and fourth
quadrant respectively and these two points constitute two initial approximate
critical points, see figure 3.

In view of Pesin theory the critical set corresponds to tangencies between the
unstable manifold W*(£) and local stable manifolds. In the uniformly hyperbolic case
the angles between local unstable and stable manifolds are uniformly bounded below.
In some sense the critical set isolates the non-uniform hyperbolic behaviour and the
main idea of the proof is to control its dynamics.

It is therefore interesting to understand the properties of the critical set. In a
master’s thesis at the Royal Institute of Technology, G. Ryd has proved that € is
located on a curve, which in local C* coordinate patches may be given as the graph
of a C*-function, 0 < & < 1. It does not seem possible to make this curve C".

10. Dimension of the attractor

Let us recall the following two theorems. The first is an extension of a result of
Pesin. The case needed here is due to Ledrappier, but see Ledrappier & Young (1985)
for considerable improvements.

Phil. Trans. R. Soc. Lond. A (1994)
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Figure 4. From left to right: <0, =0, x> 0.

Theorem 10.1. If u is an ergodic SRB-measure then the metric entropy h, satisfies
(10.1)

@=§@,

t.e. 1t 18 the sum of the positive Lyapunov exponents.

Ledrappier & Young proved that Pesin’s formula (10.1) is true if and only if x is
an SRB measure.
The second theorem is due to Young.

Theorem 10.2. If f is a C*-diffeomorphism of a two-dimensional manifold with an
ergodic invariant measure y with Lyapunov exponents A, > 0 > A,. Then the Hausdorff
dimension of the support of the measure u defined as HD(u) = inf, v, | HD(X) satisfies

1
DU = 10| 3+ 11

In the Hénon case y is SRB by Theorem 9.2 and from Theorem 10.1 we conclude
that 4, = A, and hence by Theorem 10.2

(1Y A
HD () = A, (Afmzl) = 3 Flog(i/b)"

which is > 1 but -1 as b—0.

11. Homoclinic bifurcations

Consider a one-parameter family of diffeomorphisms S —0<u <9, of a two-
manifold such that f, has a hyperbolic fixed point x, and that the eigenvalues A, and
A, at this fixed point satisfy |A,||A,] < I (the dissipative case). Suppose that for y =
0 the stable manifold W*(z,) and the unstable manifold W*(x,) have a (homoclinic)
tangency. Furthermore assume that this homoclinic intersection does not exist for
w < 0 (figure 4). This situation is called a homoclinic bifurcation and is the topic of
the recent book by Palis & Takens (1993). Arbitrarily close to a homoclinic
bifurcation there are a host of phenomena, e.g. hyperbolic behaviour (Palis, Takens,
Yoccoz) and maps with infinitely many sinks (Newhouse). Palis proposed the very
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general conjecture that an arbitrary C*-diffeomorphism may be approximated
arbitrarily well either by uniformly hyperbolic maps or by maps exhibiting a
homoclinic bifurcation.

Mora & Viana (1994) have recently proved that in the case of a generic homoclinic
bifurcation there is a positive Lebesgue measure set of parameters p for which f, has
a Hénon type strange attractor. The starting point of their proof is the following:

Note first that the Hénon family of maps after a change of coordinates

x, =z, Yy, =y/Vb

) (0l

Suppose that f, € C*. One of the main ideas in the book of Palis & Takens is that one
can choose a small neighbourhood of the homoclinic bifurcation and a high iterate N
and find a linear change of variables A both in the coordinates and the parameters
such that the map ¢, = A 1o fV oA may be written

b = (1 _O“xz)wM

where the diffeomorphism |y o2 = b’, for some ¢ > 0, b = (|]A, A)V.

Mora & Viana then carries out the same program as in Benedicks & Carleson (1991)
but with more complicated estimates. Note that their attractor is located in the orbit
of a small neighbourhood of the homoclinic bifurcation. One cannot conclude,
however, that there is only one transitive attractor as in Benedicks & Carleson.

The computer pictures seem to indicate that there is a homoclinic bifurcation for
the Hénon family close to the classical parameters @« = 1.4 and b = 0.3. This has also
recently been rigorously verified by Fornaess. Therefore one may hope that the
theorem of Mora & Viana should apply and give a strange attractor close to the
classical parameters. However, in view of the remark above this is not sufficient to
make the conclusion that there is a single ergodic attractor equal to W*(Z).

may be written

12. Random perturbations and statistical behaviour

It is natural to consider what happens to a dynamical systems when one allows
random perturbations in each iteration. A typical model problem is the following.

Let Y, be independent, identically distributed random variables with a uniform
distribution on [—¢,€¢]. Now define a Markov chain {X,}* , by

X, =1—aX2+Y, X,=wx,=const.,

where 0 < a < 2. For a sufficiently close to 2, there is always a unique stationary
probability measure P? for the Markov chain. A natural question is how this
probability measure is related to an invariant measure y, for the unperturbed map
falx) = 1 —ax® The following is a consequence of a result in Benedicks & Young
(1991).

Theorem 12.1 (Benedicks & Young). Consider the map f,(x) = 1 —ax®, where ae
A, the set of parameters defined in Benedicks & Carleson (1985). Then f, has an
absolutely continuous invariant measure u, and the stationary measures P? of the Markov
chain {X,}X_, tend weakly to u, as e—0.
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Hence the distributions of a typical perturbed and unperturbed orbit are
essentially the same. This at least partly explains why the results of the computer
experiments seem to be correct in spite of intrinsic round off errors.

For ae A, again the same set as in Benedicks & Carleson (1985), one may view an
orbit {x,}?_, of the map f, as a stationary stochastic process with invariant
probability measure u,. It is natural to ask how ‘independent’ z, and z,, are when
|n—m| is large. A result in this direction is the following theorem on the decay of
correlation:

Theorem 12.2 (Young 1992). Consider f(x) = f,(x) and the corresponding invariant
measure u = u, for ae A, the parameter set of Benedicks & Carleson (1991). Suppose that
¢ and Y are functions of bounded variation such that

J¢(x) du(x) = fl,#(x) du(x) = 0.

Then there are constants ¢ > 0 and C > 0 such that

J¢ (f"(x x)) dpu(z)

Results similar to Theorem 12.1 and Theorem 12.2 have existed for some time in
the uniformly hyperbolic setting. In the non-uniform hyperbolic case in two
variables the corresponding results are still unknown.

< Ceeln=ml,

13. Open problems

Several open problems have already been described above but I wish to finish by
mentioning some problems, which indicate in which direction one would like to
pursue this subject.

A major open problem is to extend the two-dimensional theory in the dissipative
(area shrinking) case described above to an area preserving case. A famous model
dynamical system is the standard map family f. These are maps of the two-torus 7?2

defined by
(x) (Zx —y+ K sin (2nz)
el
Y x

The main conjecture is that there is a set of positive one-dimensional measure of
parameters K such that there is a positive Lebesgue measure set of initial points with
positive Lyapunov exponent.

One of the main new difficulties here, in contrast to the case of Hénon maps, is that
one has to deal with a critical set which is essentially one dimensional. It is no longer
possible to enforce that the orbit of a point of the critical set avoids the critical set.

A new result in the opposite direction (which however does not contradict the
conjecture) is the following recent result due to Duarte (1993).

) (mod 1).

Theorem 13.1. There is a sequence of parameters K, —~oo such that for Jx, in the
standard map family, the closure of the union of the ellzptw fixed points K, ‘has the
property that the Hausdorff dimension HD(E,)—~2 as n—>00.

Finally, the problem of the Lorenz equations still remains unsolved in spite of
major efforts. The situation in this case seems, however, to be different from that of
the Hénon map. Numerical evidence suggest that the Poincaré map, although
discontinuous, is piecewise uniformly hyperbolic. This could in principle be proved
by sufficiently good numerical estimates. Assuming this is true, the system can be
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studied satisfactorily by symbolic dynamics (Guckenheimer & Williams 1979). While
it is more complicated than the Axiom-A case, this picture is much simpler than that
of the Hénon map. Another relevant reference is the book by Sparrow (1982) on the
Lorenz equations.

We thank the referee for useful corrections and suggestions, especially the concluding remarks
concerning the Lorenz equations.
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